A text processing pipeline to extract recommendations from radiology reports

نویسندگان

  • Meliha Yetisgen-Yildiz
  • Martin L. Gunn
  • Fei Xia
  • Thomas H. Payne
چکیده

Communication of follow-up recommendations when abnormalities are identified on imaging studies is prone to error. The absence of an automated system to identify and track radiology recommendations is an important barrier to ensuring timely follow-up of patients especially with non-acute incidental findings on imaging examinations. In this paper, we present a text processing pipeline to automatically identify clinically important recommendation sentences in radiology reports. Our extraction pipeline is based on natural language processing (NLP) and supervised text classification methods. To develop and test the pipeline, we created a corpus of 800 radiology reports double annotated for recommendation sentences by a radiologist and an internist. We ran several experiments to measure the impact of different feature types and the data imbalance between positive and negative recommendation sentences. Our fully statistical approach achieved the best f-score 0.758 in identifying the critical recommendation sentences in radiology reports.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic abstraction of imaging observations with their characteristics from mammography reports

BACKGROUND Radiology reports are usually narrative, unstructured text, a format which hinders the ability to input report contents into decision support systems. In addition, reports often describe multiple lesions, and it is challenging to automatically extract information on each lesion and its relationships to characteristics, anatomic locations, and other information that describes it. The ...

متن کامل

Extracting Imaging Observation Entities in Mammography Reports

Since radiology reports are created as unstructured text reports, Natural language processing (NLP) techniques are needed to extract structured information from reports to provide the inputs to information systems. The goal of this project is to develop NLP methods to extract the Imaging Observations and their modifiers from free-text mammography reports in order to provide structured data to r...

متن کامل

Annotation of Clinically Important Follow-up Recommendations in Radiology Reports

Communication of follow-up recommendations when abnormalities are identified on imaging studies is prone to error. The absence of an automated system to identify and track radiology recommendations is an important barrier to ensuring timely follow-up of patients especially with non-acute incidental findings on imaging studies. We are in the process of building a natural language processing (NLP...

متن کامل

Annotation for Information Extraction from Mammography Reports

Inter and intra-observer variability in mammographic interpretation is a challenging problem, and decision support systems (DSS) may be helpful to reduce variation in practice. Since radiology reports are created as unstructured text reports, Natural language processing (NLP) techniques are needed to extract structured information from reports in order to provide the inputs to DSS. Before creat...

متن کامل

Presenting a method for extracting structured domain-dependent information from Farsi Web pages

Extracting structured information about entities from web texts is an important task in web mining, natural language processing, and information extraction. Information extraction is useful in many applications including search engines, question-answering systems, recommender systems, machine translation, etc. An information extraction system aims to identify the entities from the text and extr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of biomedical informatics

دوره 46 2  شماره 

صفحات  -

تاریخ انتشار 2013